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C-SWEPA Goals

Goal 1: Scientifically explore the seed populations and acceleration of energetic particles in the
low corona, through interplanetary space, and over broad longitudinal regions.

Goal 2: Couple the energetic particle acceleration model (EPREM, the energetic particle radiation
environment model) with MHD models that describe the propagation of coronal mass ejections
from the low coronal plasma environment through the interplanetary medium.

Goal 3: Validate results the coupled EPREM and EMMREM models with observations at
distributed observers near 1 AU and out beyond Mars. Validation extends across our
understanding of radiation induced hazards from solar energetic particles and galactic cosmic rays
at Earth down to atmospheric levels, out into deep space and to Mars and beyond.

Goal 4: Extend key data sets useful for the project: shock parameters at 1 AU, CME propagation
data, and radiation environment data through the inner heliosphere.
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Investigator Highlights

Matt Gorby (UNH), Jon Linker*, Ron Caplan*, Tibor Térok*, Cooper Downs* (*PSlI)
— Fantastic work on development, coordination, coupling
—  Work with PSI and CCMC
Leila Mays, CCMC
—  Excellent partner at the CCMC
—  Currently leading a C-SWEPA publication
— Invited talks at AGU, EGU, on coupled modeling
Colin Joyce
—  Graduated!

— Authored or Co-authored 14 publications, first-authored 5 publications in diverse
areas

Reka Winslow
—  New PostDoc at UNH

— Several new discoveries about the evolution of Coronal Mass Ejections through
conjunction events from Messenger to ACE, STEREO and LRO

Junhong Chen

— Recently received PhD

—  Work on suprathermal ions and PUI acceleration
Philip Quinn

—  Graduating Soon(™)

— Leading three papers on pickup ions, suprathermal ions and radiation through the
inner heliosphere

Fatemeh Rahmanifard

—  Studying evolution of the solar cycle, possible development of grand minimum and
implications for radiation
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Deriving the Scattering Mean Free Path of Helium
Pickup lons

Pickup ion
measurements derive
a longitudinal inflow
direction of the
interstellar wind that is
consistently higher
than neutral
measurements.

Simulating the
transport between
neutral focusing cone
and pickup focusing
cone allows us to
derive parameters.

Density

Longitude

PUI Transport
(relative 1o radial
solar wind flow)

Interstellar Wind

=

Quinn et al. 2016
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The transport of helium pickup ions is
simulated using EPREM for a mean free
path range of 0.1 AU to 1 AU.
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The longer the mean free path, the more
the pickup focusing cone shifts compared
to the neutral focusing cone.
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The modeled shift intersects the observed
shift at 0.19 AU +0.29(-0.19) AU.
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The amount of shift is suggested to be due to an
anisotropic velocity distribution.

By calculating the average azimuthal velocity of the
pickup ions, we see that the pickup ion distribution
reaches ~8% of the solar wind speed inside 1 AU.

Although this velocity is small, it’s enough to shift
the focusing cone by the 1.8 degree observation
difference.

Using EPREM'’s ability to turn transport effects on or
off, EPREM is ran for the 4 cases shown in the figure
caption.

The amount of shift from each transport effect is
found by differencing the peak longitude with the
previous case.

Pitch-angle scattering 20.00%
Adiabatic focusing 69.43%
Perpendicular diffusion 10.56%
Particle drift <0.01%
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Jan 2012 ENLIL+EPEM results

Data plot by Hazel Bain
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Joyce et al., 2015

Dose Rate (cGy-Eq/day)
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EPREM SEP profiles at different observers (Iatltude-0°)
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Overview of Deliverables

e Deliverables Outside the CCMC
o PREDICCS: Running in real-time radiation environment. http://prediccs.sr.unh.edu
o EPREM + MAS: Coupled codes running simulations below 20 Rs.

e Deliverables to the CCMC
o PREDICCS: Installed and running in real-time.
https://ccmc.gsfc.nasa.gov/ccme-swan/predices.php
o EPREM: Installed and working toward runs-on-request.
o EPREM + Cone: Installed and working toward runs-on-request.
o EPREM + WSA-Enlil: Installed, simulations are being tested / validated. Preliminary
runs results are listed at: http://ccmc.gsfc.nasa.gov/community/LWS/lws_cswepa.php



http://prediccs.sr.unh.edu
https://ccmc.gsfc.nasa.gov/ccmc-swan/prediccs.php
http://ccmc.gsfc.nasa.gov/community/LWS/lws_cswepa.php

Partnering with the CCMC

Single point of contact: Leila Mays.

Plenty of communication both directly and
through weekly project teleconferences.

Travel to Goddard for model integration

was always a pleasure.

Delivery of model and integration was
(necessarily?) ill defined.



